Influence of Microstructure on the Mechanical and Corrosion Response of a Friction Stir-Extruded WE43 Magnesium Rod

نویسندگان

چکیده

Friction stir extrusion (FSE) was used with WE43 Mg to create a rod hybrid microstructure. The rod’s electrochemical corrosion response characterized in Hank’s balanced salt solution at 37 ± 1 °C. showed refined grains near the edge, while coarse were observed center. A larger fraction of precipitates edge possibly hindering grain growth. and presence regions resulted higher hardness owing confluence precipitate hardening solid–solution strengthening. Texture analysis cross-section exhibited basal texture, perpendicular direction populating outer surface. In compression, near-base material yield strength (225.6 MPa) good combination compressive (357.5 ductility (~17.7%). sensitive variations size, distribution between core regions. Removal region formation more stable protective film an increase immersion period. results from study establish ability FSE process tailor microstructure thereby influencing mechanical properties rate alloy.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Vitro Corrosion Study of Friction Stir Processed WE43 Magnesium Alloy in a Simulated Body Fluid

Corrosion behavior of friction stir processing (FSP) WE43 alloy in a simulated body fluid (SBF) was investigated. Micro-galvanic corrosion was the dominated corrosion behavior, and the corrosion resistance of FSP WE43 alloy was improved compared to the cast counterpart. Furthermore, due to the fine-grained and homogeneous microstructure, uniform corrosion morphology was observed on FSP WE43 all...

متن کامل

Corrosion Behavior of the Friction Stir Welded AZ31 Magnesium Alloy.

* IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal ** DEQ/ICEMS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049001 Lisboa, Portugal. *** Department of Engineering Design and Production, School of Engineering, Aalto University, P.O. Box 1420, FI-00076 Aalto, Finland **** Faculdade de Engenharia da universidade do P...

متن کامل

Microstructure, Mechanical and Corrosion Properties of Friction Stir Welding High Nitrogen Martensitic Stainless Steel 30Cr15Mo1N

High nitrogen martensitic stainless steel 30Cr15Mo1N plates were successfully welded by friction stir welding (FSW) at a tool rotation speed of 300 rpm with a welding speed of 100 mm/min, using W-Re tool. The sound joint with no significant nitrogen loss was successfully produced. Microstructure, mechanical and corrosion properties of an FSW joint were investigated. The results suggest that the...

متن کامل

The Effect of Friction Stir Processing Speed Ratio on the Microstructure and Mechanical Properties of A 430 Ferritic Stainless Steel

This study is an attempt to investigate the effect of welding rotational and traverse speed on mechanical and microstructural properties of A 430 stainless steel in order to give an effective processing window to achieve an appropriate microstructure and so mechanical properties. There are a wide range industrial uses for ferritic stainless steel. There from they have some problems like grain c...

متن کامل

Effects of Friction Stir Process Parameters on Microstructure and Mechanical properties of Aluminum Powder Metallurgy Parts

The effects of friction stir processing (FSP) on the microstructure and mechanical properties of aluminum powder metallurgy (PM) parts was investigated. PM parts were then subjected to FSP at advancing speeds (v) of 40-200 mm/min and tool rotational speeds (ω) of 800-1600 rpm. Microhardness (HV) and tensile tests at room temperature were used to evaluate the mechanical properties of the frictio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Metals

سال: 2023

ISSN: ['2075-4701']

DOI: https://doi.org/10.3390/met13020191